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Codimension-2 Hopf bifurcation problem of a two-degree-of-freedom system vibrating
against a rigid surface is investigated in this paper. The four-dimensional Poincaré map of
the vibro-impact system is reduced to a two-dimensional normal form by virtue of a center
manifold reduction and a normal form technique. Then the theory of Hopf bifurcation of
maps in R? is applied to conclude the existence of codimension-2 Hopf bifurcation of the
vibro-impact system. The quasi-periodic response of the system by theoretical analysis is
well supported by numerical simulations. It is shown that there exists codimension-2 Hopf
bifurcation in multi-degree-of-freedom vibro-impact systems. The codimension-2 tori
doubling phenomenon and the routes of quasi-periodic impacts to chaos are reported
briefly.

© 2001 Academic Press

1. INTRODUCTION

The optimum designs for a large number of mechanical systems with impacts, rely entirely
upon an over-all knowledge of the dynamic mechanism of vibro-impact system. The
phenomena of bifurcation and chaos in vibro-impact systems have been reported
extensively in recent years in references [1-9], but few researchers have investigated
the phenomena of Hopf bifurcation in vibro-impact systems. Xie [6] investigated the
codimension-2 bifurcation and Hopf bifurcation of a single-degree-of-freedom system
vibrating against an infinitely large plane. Ivanov [7] thought it possible for Hopf
bifurcation to exist in multi-degree-of-freedom vibro-impact systems. In the recent past,
Luo and Xie [8, 9] analyzed the existence of Hopf bifurcation in a two-degree-of-freedom
vibro-impact system for the case of a single complex-conjugate pair of simple eigenvalues
crossing the unit circle.

In this paper, we will analyze the existence of codimension-2 Hopf bifurcation of
a two-degree-of-freedom vibro-impact system similar to the system considered by Luo and
Xie [8, 9]. The rather lengthy procedure used for reducing the map of the system into
a two-dimensional one by using a center manifold theorem in reference [10], is essentially
similar to the one presented in great detail in reference [§]. It is reasonable to present only
the corresponding abridgement and to focus on the derivation of codimension-2 normal
form of the two-degree-of-freedom vibro-impact systems according to the theory of normal
forms in references [11, 12]. The existence of codimension-2 Hopf bifurcation of the
two-parameter normal form is more likely to be investigated by the theory of Hopf
bifurcation of maps in R? in reference [13]. This theoretical solution is well verified by the
results obtained by numerical simulations, which are represented by codimension-2
invariant circles in the projected Poincaré sections. It is shown that there exists
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Figure 1. Schematic of the two-degree-of-freedom impact oscillator.

codimension-2 Hopf bifurcation in multi-degree-of-freedom vibro-impact systems under
suitable system parameters. The codimension-2 tori doubling bifurcation and the routs of
quasi-periodic impacts to chaos are also reported briefly.

2. ESTABLISHMENT AND REDUCTION OF POINCARE MAP

The mechanical model for a two-degree-of-freedom vibrator is shown in Figure 1. The
mass M; impacts against a rigid surface when its displacement X; equals the gap B. The
impact is described by a coefficient of restitution R.

Between impacts, for X; < B, the equations of motion of the two-degree-of-freedom
impact oscillator with proportional damping are written in a non-dimensional form

1 0 |({xy 2¢ —2¢ Xq 1 —1 Xq
[0 u,j {x} " [ ~2¢ 241+ MCJ {x} " [ 11+ uJ {x}

:¥;ﬁ%mmuﬁxgn<m (1)

and the impact equation of mass M; for (x; = b) is
X1+= —Rxl,. (x1 :b) (2)

where the non-dimensional quantities are of the form

M, K, f P, 0 My C, (3a)
,umzin 4“ =7 > ,u'c:,u9, :73(’0: 7’g:7’ a
M, - K, /2 Py + P, K, 2@

K BK XK . X,.K ) X,_K
t=T 719 b= L , Xi = ! , X1+ = L 1) X1- = : 1' (3b)
Ml P1+P2 P1+P2 P1+P2 P1+P2

In equations (1) and (2), a dot denotes differentiation with respect to the non-dimensional
time t, X;+ and X, _ represents the impacting mass velocities of approach and departure
respectively. Let ¥; denote the canonical model matrix of equation (1) and take it as
a transition matrix, under the change of variables

X = W¢ 4)
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Equation (1) reduces to
I¢ + C¢ + A¢ = Fsin(ot + 1), (5)

where X = (x, x,)7, & = (&1, &))", T is a unit matrix 2x 2, C = 264 = diag [2cwi, 2¢m3 ],
A =diag[w}, 03], F=(f1, L)' =Y. f=01 —f,, f>)". It then follows that by using
formal co-ordinate and modal matrix approach, the general solution of equation (1) takes
the form

2

X; = Z Vi€ (ajcos wyit + bjsin wy;t) + A;sin (ot + 1) + Bjcos(wt + 1)),  (6a)
ji=1

2
Xi = Z ¢ij(€7nft((bjwdj — ﬂja}')COS G)djt — (aj(l)dj + njbj) sin (l)dj[)
j=1

+ A;wcos(wt + 1) — Biwsin(wt + 1)) (,j=1,2), (6b)

where ¥; are elements of the canonical modal matrix ¥, ; = o}, wg; = /o — 1}, a; and
b; are the constants of integration which are determined by the initial condition and modal
parameters of the system, and A4;, B; are the amplitude parameters taking the form

4, 1<( O + Wg; B » — Wg; )]7,, (7a)

- 2(})41' w + wdj)z + 77]2 (CO — wdj)z + 17]2

1 1 1 —
B. = — . 7b
T 2wy <(w — o) +1; (0 + o)’ + 13 >fj (70)

We can choose a Poincaré section ¢ = R*x S, where ¢ = (x;, ¥;, X, X5, 0) € R* xS,
x; = b, then the two-parameter Poincaré map of the system can be established as [8]

AX' = f(v, b; 4X), (8)

where 4X € R*, AX = (4%, 4, Ax,y0, A%p0, AT)", AX' = (4%} 4, Axho, AX5o, AT')T are the
disturbed vectors in the hyperplane ¢, v = w/w,; and b are real parameters, and v e R?,
b e R', such that AX* = (0,0,0,0)" is a fixed point for system (8) in some neighborhood of the
critical parameter values v = v,, b = b,, at which Df}x (v, b; 4X*) has double eigenvalues
[14] A4 »(v., b.) = — 1, the other simple eigenvalues A3(v,, b.), L4(v., b.) stay inside the unit
circle, and Df,x(v., b.); 4X*) has the Jordan form

-1 1
-1 , )
D
where D is a real matrix with eigenvalues A5(v,, b.) and A4(v., b,).
The space R* is then decomposed as follows
R*=E,+E_, (10)

where E,, E_ are eigenspaces commuting with 4, ,(v,b) or /3 4(v, b) respectively.
Taking u; = v — v, iy = b — b, u = [11q, u,]", for the map (8), there exists a local center
manifold [10] 5,, on which the local behavior of the four-dimensional map (8) can be
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reduced into a two-dimensional map [8]. The two-dimensional map is now
Y'=Fu Y), (11)
where Y € R?, F(u,0) = 0. After the change of variables
X=GwY)=Y +®Y), &u0=0 XeR? (12)

We can reduce equation (11) into the following normal form according to the theory of
normal forms in references [11, 12],

X' = H(w X) = AgX + N (1, X), (13)

where
—1 1

In order to facilitate applications of our theoretical results, we give an explicit procedure
using the derivation of codimension-2 normal form (13), as will be seen

We expand the functions F(u, Y), @(u, Y), N(u,X) as Taylor series with respect to u, Y
or X:

F(uY)= Y Fy[u?, Y?], (14a)
ptg=1
¢(:ua Y) = Z quq ['u(p)’ Y(q):l’ (14b)
ptg=1
N, X)= 3 Ny [u?, X?], (14¢c)
ptg=1
where
1 orteF
=——(0,0
pq p|q| é\'upan( > )n
1 ot
=——(0,0
P plg! aupaw( >0
1 oPTIN
(0,0).

" plg! oprox
From H°G = G° F, we obtain
AoPii [, XT — Pya i, AgX] = Fia[p, X1 — Nia [, X1,
Ao‘poz[x(z)] — P> [(AOX)(Z)] = Fo, [X(z)] — No> [X(z)]a
Ao®o3[XP] — Do3[(AoX)D] = Fo3[XP] + 200, [ Ao X, For[ X2

— Nos[X®'] — 2Nos[X, o, [X]],

Ao® [P, X O] — B, [uP,(AoX) V] = R,y

(15)
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where R,, is a combination of F,, N, Ny, and @,,, (m+m<p+g,
n+m<p+q-—1).F, @, and N,, denote, respectively, the terms of order p of u and
order g of X, such as

(arpy + bipa)xT + (capty + dipa)xix; + (eq +f1.‘12)x§,j|

Py XP] = [
' (azpty + bapia)XT + (capty + dapiz)x1X5 + (eapts + fou2)x3

Let B,®,,[1?, X9] = Ay®,, [P, X 9] — @,,[u?, (4,X)?], and H, denotes a space of
homogeneous vector polynomials of degree q [15]. Taking e; = [x;,0]", e, = [x,,0]%,
e; = [0,x,]", es = [0,x,]" as a basis in H,, one calculates directly from the first equation of
equations (15) that

Biey = —e;, Bie; =0, Biez=e; —e4, Bies=e,, (16)
i.e., for the basis {e}, e,, e3, e,}, B; is written as

0

(17)

oo

=

|
o o o ©
S o — ©

In what follows, we write @11 = [@1, @2, @3, (P4:|T’ Ny = [ny,ny,n3, n4:|T’ F,= [ﬁ, .)72, ]73, .)74]T
and obtain

By®,y = F;; — Nq;. (18)
Equations (18) has two solutions as
@y =00, ¢, —fo, LI, Nuyv=[fi+/a 0, f3, 0] (19a)
or
@y, =[0,0, /i, fu]", Niu=[0,0 f3, fy +fu]" (19b)
where ¢ is an arbitrary constant.

Similarly, taking e, = [x1,0]", e, =[x1x5,0]", e3=[x3,0]", e, =[0,x7]", es=
[0, x;1x,]%, es = [0, x3]" as a basis in H,, one can easily show that

2 0 0 1 0 0]
2 -2 0 0 1 0
—1 1 -2 0 0 1
0 0 0 -2 0 0
0 0 0 2 -2 0
0 0 0 —1 1 —2]

Since B, is reversible, it follows from the second equation of equations (15) that

¢02 = B;1F02> NOZ[X(Z)] =0. (21)
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Repeating once more the same procedure above, we can find the two solutions of the third
equation of equations (15):

Pos = [@31, P32, 033, 0, 0, f37 + 235, f37 + 373,01,

Nos =[f31,0,0,0,f35,0,0,0] (22a)
or

Po3 = [@31, P32, P33, 0, f31, fa7 + 238, fa7 + 335, 0],

No3 =[0,0,0,0, f3s, 3 f31 + f36, 0, 0] (22b)

where ¢3;, f3; denote, respectively, the ith element of @5 and Fy5 for a suitable basis in Hs,
and

@31 =3(—fa2 +f37 + 2 f35),
@32 =3(—fa2 = f33 + 2f37 + 5 f3s),
@33 =6(—fa2 = 3f33 — 6fsa + 4f37 + 11 f35).
The aforementioned steps may be applied to solve the other equations in equation (15).
Let &, =f; + /4, &2 =f3 for (19a), or & =f3, &, =f1 +f4 for (19b), a; =331 + f3s,

a, = f3s,a3 = f31. From equations (19), (21) and (22), we can obtain four equivalence normal
forms. One of them is in the form

A ! 1]/x, £1X1 0 0
<x;> - [ 0 — 1]<x2> * <82x1> * <a1x%x2 ; azxi> * <0<<|x1| T |x2|)5)>' @)

For convenience of notation, equation (23) is now written as
X' =f(e1, €2; X) (24)

where

X = <;€1> € R?, & = & (1) and &, = &;(u)
2

are bifurcation parameters, a; and a, are constants.
It follows that the period two points of equation (24) satisfy

f2(81, £ X) = X. (25)

Ignoring the terms of high order, the solutions of equation (25) are then

X1= < 2 (26a)

xo=(- 2 ) (26b)
—da —d
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The Jacobian operator A, of map f2 (¢, £,; X ) at the period two points X 1, X2 has the form

a
1 —2(e + &) —2+£1—a—1£2
Ay =Df ey, &35 Xi) = oL i=n2 @)
4e, 1+2<—1+“1>32
az

and

tr A, = 2(1 et (“1 - 2>gz>, det Ay = 1 — 26, + 2<“1 + 2>82. (28)

as as

When ¢, = &% = 1/(2 + ay/a,)ey, it is clear that det 4, = 1.

Lete = 2(ay/a, + 2)e, — 2¢q, then &,, passing through &4 while ¢, is fixed on a sufficiently
small value &}, corresponds to ¢ crossing 0. Because of the center manifold [10] =, the local
dynamic behavior of the four-dimensional map (8) can be reduced to the two-dimensional
map (24), it is sure that the existence of codimension-2 Hopf bifurcation of the vibro-impact
system in Figure 1 can be discussed through applying the lemma mentioned below to
analyze the existence of Hopf bifurcation of map f?(e; X).

Lemma (Iooss [13]). Let F, be a one-parameter family of diffeomorphisms on R?, satisfying
the following conditions:

H1. F,(e, 0) =0 for all ¢
H2. DyF, (0, 0) has two conjugated eigenvalues 1o, /o With |do| = || = 1

d|i(e)|

de e=0

H3.

H4. J"(0)#1, m=1,234,5.

Subject to these assumptions H1-H4, we can make smooth e-dependent change of the
co-ordinate bringing F, into the form

Fy(x1, x5) = NF,(xy, X2) + 0(|X) (29)
in polar co-ordinates
NF, = ([(e)lr — fi(@)r%, ¢ + 0(e) + f3(e)°). (30)

If £1(0) > 0(f1(0) < 0), F, has an attracting (repelling) invariant circle for ¢ > 0 (¢ <0).
Suppose that the complex form of F; is

3 ZiZ—j
Fo(2) = 2oz + ). 2if(0) 7= + O(lz1*), 31)
i+j=2 il
then
' 1 —270)4 1 1 i
700 = Re G2 g 4 Lol + e — Re(ME2)

where /o = A(0) and g;; = g;;(0).
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Figure 2. The codimension-2 Hopf circles (attracting inside and outside) of the normal form map (23):
& = 0010146, ¢, = 0012498, a; = 7628514 and a, = — 6:951389.
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Figure 3. The stable period 2 points corresponding to the periodic 2-2 impact motion of the vibro-impact
system shown in projected Poincaré section: p,, = 6:161868, 1, =2, ¢=0, f, =0, R=08, b =1:17937 and
v =0764.

3. NUMERICAL SIMULATIONS OF CODIMENSION-2 HOPF BIFURCATION

Let p,=6161868, w, =2, ¢=0, f, =0, R=08 in the two-degree-of-freedom
vibro-impact system in Figure 1. According to the critical value of bifurcation parameter
which was obtained from the theoretical analysis in the former section, as shown:

v, = 076104, b, = 117359, a, = 7628514, a, = — 6-951389, (33)
g1 = 0:080339u; + 1:630813u,, e, = — 0-080339u; + 2:286738 5, (34

we can find that while &f = 0004925, ¢, = &% = 0-005457 (i.e., ¢ = 0), a supercritical Hopf
bifurcation takes place for the map f2(s; X) satisfying those conditions in the lemma
presented in section 2; while &, > &% (i.e., ¢ > 0) and |e, — &%| is sufficiently small, there exists
an attracting Hopf circle (attracting inside and outside) for the map f2(g; X) (ie., stable
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Figure 4. The stable codimension-2 Hopf circles (quasi-periodic motion of the vibro-impact system) shown in
projected Poincaré sections: u,, = 6:161868, i, =2, ¢=0,f, =0, R =038, b = 117937 and v = 0-77.

codimension-2 Hopf circle of the normal form map (23) (Figure 2)), which corresponds to
the codimension-2 Hopf circles of the original Poincaré map (8) of the vibro-impact system
(1). Hence, one can easily finish the work of numerical simulations on the codimension-2
Hopf bifurcation of the four-dimensional Poincaré map (8) according to the critical value of
bifurcation parameter obtained from the theoretical analysis cited before, as shown in
Figures 4a-f, where b =117937, v=077 (ie, & = 0010146, &, =0-012498; the
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Figure 5. The codimension-2 torus doubling of the vibro-impact system shown in projected Poincaré sections:
Ly = 6161868, 1, =2,¢c=0,f, =0, R=08, b =1:17937 and v = 0-7785, where the result in (b) is obtained by
ignoring the first 1000 impacts among the 8000 impacts in (a).
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Figure 6. The choatic motion of the vibro-impact system shown in projected Poincaré section: y,, = 6:161868,
w=2,6=0,f/,=0,R=08,b=117937 and v = 0-7793.

corresponding plot of the normal form map (23) is shown in Figure 2). These codimension-2
Hopf circles in the projected Poincaré sections represent the quasi-periodic impact response
of the system in Figure 1. As the value of v moves further away from the one for
codimension-2 Hopf bifurcation, an observable codimension-2 torus-doubling bifurcation
plotted in Figure 5a,b occurs. Following the single codimension-2 torus-doubling
bifurcation, the system settles into chaotic motion as shown in Figure 6.

4. CONCLUSIONS AND DISCUSSION OF RESULTS

In this paper, we have studied the codimension-2 quasi-periodic impacts of the system
shown in Figure 1 by theoretical analysis and numerical simulations. It is certain that there
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ists codimension-2 Hopf bifurcations in vibro-impacting system with two or more degrees
freedom under suitable system parameters. The method stated in section 2 is effective for
her vibro-impacting models with two degrees of freedom to conclude the existence of

codimension-2 Hopf bifurcation of them. However, due to the specific local property of the
center manifold, the corresponding 2-dimensional normal forms (23) fails to analyze the
codimension-2 torus-doubling bifurcation, which is necessary to make a further theoretical
study.
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