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Codimension-2 Hopf bifurcation problem of a two-degree-of-freedom system vibrating
against a rigid surface is investigated in this paper. The four-dimensional PoincareH map of
the vibro-impact system is reduced to a two-dimensional normal form by virtue of a center
manifold reduction and a normal form technique. Then the theory of Hopf bifurcation of
maps in R2 is applied to conclude the existence of codimension-2 Hopf bifurcation of the
vibro-impact system. The quasi-periodic response of the system by theoretical analysis is
well supported by numerical simulations. It is shown that there exists codimension-2 Hopf
bifurcation in multi-degree-of-freedom vibro-impact systems. The codimension-2 tori
doubling phenomenon and the routes of quasi-periodic impacts to chaos are reported
brie#y.
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1. INTRODUCTION

The optimum designs for a large number of mechanical systems with impacts, rely entirely
upon an over-all knowledge of the dynamic mechanism of vibro-impact system. The
phenomena of bifurcation and chaos in vibro-impact systems have been reported
extensively in recent years in references [1}9], but few researchers have investigated
the phenomena of Hopf bifurcation in vibro-impact systems. Xie [6] investigated the
codimension-2 bifurcation and Hopf bifurcation of a single-degree-of-freedom system
vibrating against an in"nitely large plane. Ivanov [7] thought it possible for Hopf
bifurcation to exist in multi-degree-of-freedom vibro-impact systems. In the recent past,
Luo and Xie [8, 9] analyzed the existence of Hopf bifurcation in a two-degree-of-freedom
vibro-impact system for the case of a single complex-conjugate pair of simple eigenvalues
crossing the unit circle.

In this paper, we will analyze the existence of codimension-2 Hopf bifurcation of
a two-degree-of-freedom vibro-impact system similar to the system considered by Luo and
Xie [8, 9]. The rather lengthy procedure used for reducing the map of the system into
a two-dimensional one by using a center manifold theorem in reference [10], is essentially
similar to the one presented in great detail in reference [8]. It is reasonable to present only
the corresponding abridgement and to focus on the derivation of codimension-2 normal
form of the two-degree-of-freedom vibro-impact systems according to the theory of normal
forms in references [11, 12]. The existence of codimension-2 Hopf bifurcation of the
two-parameter normal form is more likely to be investigated by the theory of Hopf
bifurcation of maps in R2 in reference [13]. This theoretical solution is well veri"ed by the
results obtained by numerical simulations, which are represented by codimension-2
invariant circles in the projected PoincareH sections. It is shown that there exists
0022-460X/01/180475#11 $35.00/0 ( 2001 Academic Press



Figure 1. Schematic of the two-degree-of-freedom impact oscillator.
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codimension-2 Hopf bifurcation in multi-degree-of-freedom vibro-impact systems under
suitable system parameters. The codimension-2 tori doubling bifurcation and the routs of
quasi-periodic impacts to chaos are also reported brie#y.

2. ESTABLISHMENT AND REDUCTION OF POINCARE MAP

The mechanical model for a two-degree-of-freedom vibrator is shown in Figure 1. The
mass M

1
impacts against a rigid surface when its displacement X

1
equals the gap B. The

impact is described by a coe$cient of restitution R.
Between impacts, for X

1
(B, the equations of motion of the two-degree-of-freedom

impact oscillator with proportional damping are written in a non-dimensional form
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In equations (1) and (2), a dot denotes di!erentiation with respect to the non-dimensional
time t, xR

1`
and x5

1~
represents the impacting mass velocities of approach and departure

respectively. Let W
i

denote the canonical model matrix of equation (1) and take it as
a transition matrix, under the change of variables

X"Wm. (4)
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Equation (1) reduces to
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We can choose a PoincareH section pLR4]S, where p"(x
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"b, then the two-parameter PoincareH map of the system can be established as [8]
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The space R4 is then decomposed as follows
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reduced into a two-dimensional map [8]. The two-dimensional map is now
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where >3R2, F(k, 0)"0. After the change of variables
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We can reduce equation (11) into the following normal form according to the theory of
normal forms in references [11, 12],
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In order to facilitate applications of our theoretical results, we give an explicit procedure
using the derivation of codimension-2 normal form (13), as will be seen
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Repeating once more the same procedure above, we can "nd the two solutions of the third
equation of equations (15):
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analyze the existence of Hopf bifurcation of map f 2(e ; X).
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Figure 2. The codimension-2 Hopf circles (attracting inside and outside) of the normal form map (23):
e
1
"0)010146, e

2
"0)012498, a

1
"7)628514 and a

2
"!6)951389.

Figure 3. The stable period 2 points corresponding to the periodic 2-2 impact motion of the vibro-impact
system shown in projected PoincareH section: k

m
"6)161868, k

k
"2, 1"0, f

2
"0, R"0)8, b"1)17937 and

v"0)764.
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3. NUMERICAL SIMULATIONS OF CODIMENSION-2 HOPF BIFURCATION
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Figure 4. The stable codimension-2 Hopf circles (quasi-periodic motion of the vibro-impact system) shown in
projected PoincareH sections: k

m
"6)161868, k

k
"2, 1"0, f

2
"0, R"0)8, b"1)17937 and v"0)77.
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codimension-2 Hopf circle of the normal form map (23) (Figure 2)), which corresponds to
the codimension-2 Hopf circles of the original PoincareH map (8) of the vibro-impact system
(1). Hence, one can easily "nish the work of numerical simulations on the codimension-2
Hopf bifurcation of the four-dimensional PoincareH map (8) according to the critical value of
bifurcation parameter obtained from the theoretical analysis cited before, as shown in
Figures 4a}f, where b"1)17937, l"0)77 (i.e., e

1
"0)010146, e

2
"0)012498; the



Figure 5. The codimension-2 torus doubling of the vibro-impact system shown in projected PoincareH sections:
k
m
"6)161868, k

k
"2, 1"0, f

2
"0, R"0)8, b"1)17937 and v"0)7785, where the result in (b) is obtained by

ignoring the "rst 1000 impacts among the 8000 impacts in (a).

Figure 6. The choatic motion of the vibro-impact system shown in projected PoincareH section: k
m
"6)161868,

k
k
"2, 1"0, f

2
"0, R"0)8, b"1)17937 and v"0)7793.
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corresponding plot of the normal form map (23) is shown in Figure 2). These codimension-2
Hopf circles in the projected PoincareH sections represent the quasi-periodic impact response
of the system in Figure 1. As the value of v moves further away from the one for
codimension-2 Hopf bifurcation, an observable codimension-2 torus-doubling bifurcation
plotted in Figure 5a, b occurs. Following the single codimension-2 torus-doubling
bifurcation, the system settles into chaotic motion as shown in Figure 6.

4. CONCLUSIONS AND DISCUSSION OF RESULTS

In this paper, we have studied the codimension-2 quasi-periodic impacts of the system
shown in Figure 1 by theoretical analysis and numerical simulations. It is certain that there
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exists codimension-2 Hopf bifurcations in vibro-impacting system with two or more degrees
of freedom under suitable system parameters. The method stated in section 2 is e!ective for
other vibro-impacting models with two degrees of freedom to conclude the existence of
codimension-2 Hopf bifurcation of them. However, due to the speci"c local property of the
center manifold, the corresponding 2-dimensional normal forms (23) fails to analyze the
codimension-2 torus-doubling bifurcation, which is necessary to make a further theoretical
study.
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